Nested Simulation in Portfolio Risk Measurement

نویسندگان

  • Michael B. Gordy
  • Sandeep Juneja
چکیده

Risk measurement for derivative portfolios almost invariably calls for nested simulation. In the outer step one draws realizations of all risk factors up to the horizon, and in the inner step one re-prices each instrument in the portfolio at the horizon conditional on the drawn risk factors. Practitioners may perceive the computational burden of such nested schemes to be unacceptable, and adopt a variety of second-best pricing techniques to avoid the inner simulation. In this paper, we question whether such short cuts are necessary. We show that a relatively small number of trials in the inner step can yield accurate estimates, and analyze how a fixed computational budget may be allocated to the inner and the outer step to minimize the mean square error of the resultant estimator. Finally, we introduce a jackknife procedure for bias reduction and a dynamic allocation scheme for improved efficiency. JEL Codes: G32, C15

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Smoothing for Nested Estimation with Application to Portfolio Risk Measurement

Nested estimation involves estimating an expectation of a function of a conditional expectation via simulation. This problem has of late received increasing attention amongst researchers due to its broad applicability particularly in portfolio risk measurement and in pricing complex derivatives. In this paper we study a kernel smoothing approach. We analyze its asymptotic properties, and presen...

متن کامل

Stochastic Kriging for Efficient Nested Simulation of Expected Shortfall

We use stochastic kriging, a metamodeling technique, to speed up nested simulation of expected shortfall, a portfolio risk measure. Evaluating a risk measure of a portfolio that includes derivative securities may require nested Monte Carlo simulation. The outer level simulates financial scenarios and the inner level of simulation estimates the portfolio value given a scenario. Spatial metamodel...

متن کامل

Robustness-based portfolio optimization under epistemic uncertainty

In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...

متن کامل

Efficient Risk Estimation via Nested Sequential Simulation

W analyze the computational problem of estimating financial risk in a nested simulation. In this approach, an outer simulation is used to generate financial scenarios, and an inner simulation is used to estimate future portfolio values in each scenario. We focus on one risk measure, the probability of a large loss, and we propose a new algorithm to estimate this risk. Our algorithm sequentially...

متن کامل

Risk Estimation via Regression

We introduce a regression-based nested Monte Carlo simulation method for the estimation of financial risk. An outer simulation level is used to generate financial risk factors and an inner simulation level is used to price securities and compute portfolio losses given risk factor outcomes. The mean squared error (MSE) of standard nested simulation converges at the rate k−2/3, where k measures c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Management Science

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2010